
6.0  Conclusions
The SX chip provides the cost effective pixel processing
capability to a traditional workstation. Its integrated archi-
tecture speeds up the memory access necessary for graphics
and imaging applications. The integer vector processor
architecture of the SX pixel processor provides more effi-
cient ALU operations than can be accomplished with the
CPU. The feature of being a programmable pixel processor
will also allow the SX chip to easily accommodate new algo-
rithms and new applications.
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5.0  Hardware Performance
The below operations were preformed on prototype hard-
ware. The results reflect guaranteed never to exceed hard-
ware SX performance. All software overhead has been
eliminated and only the SX instruction stream is measured.
All the tests were performed in true color(RGB) and to
Vram. Performance represents the number of operation per
second while ns/pixel is the total cost of the operation in
terms of nanosecond per pixel.

Figure 12 - SX Performance Measurements
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4.2  Sample Algorithms

This section will describe how to implement some basic
pixel operations using the SX. Only the important parts of
the algorithms are described; the housekeeping parts such as
loops and address calculations are omitted. At the end, the
SX performance for these operations is reported.

4.2.1  Fill (Clear, Tile)

The operation is to write a pixel to memory.

/* store registers Rfill..Rfill+31 to
memory at dst */

stld(dst, Rfill, 32)

Tile is the about the same speed as fill when the source fits in
the registers.

4.2.2  Stipple

The operation is to write a pixel to memory if the corre-
sponding bit in a mask is set.

/* store next 32 bits of mask into
MASK register */

write(MASK, mask)

/* conditional store registers Rstip-
ple.. to memory at dst */

stld(M, dst, Rstipple, 32)

If the pattern is small enough, say 32 x 32 bits, it does not
need to be loaded before each store.

4.2.3  Copy

The operation is to copy a pixel from memory to memory.

/* load next 32 pixels into Rcopy from
memory at src */

ldld(src, Rcopy, 32)

/* store from Rcopy to memory at dst
*/

stld(dst, Rcopy, 32)

“Backward” copies, needed when copying from a source to a
destination on the same raster, with the destination coming
after the source, are done simply by stepping the addresses
backwards.

4.2.4  Transpose

The operation is to transpose the raster about the diagonal
extending from the upper left to the lower right corner.

/* read in a block 12 pixels by 8 pix-
els */

ldld(src, Rblock, 12)
... seven more loads ...

/* gather each row and store into mem-
ory at dst */

gath(Rblock, 8, Rrow, 8)
stld(dst, Rrow, 8)
gath(Rblock+12, 8, Rrow, 8)
stld(dst, Rrow, 8)
... ten more gath/stld ...

The basic idea is to load the 12 x 8 block of pixels, and then
gather each column of 8 pixels into 8 sequential registers and
then store. Other operations such as flipping about the hori-
zontal axis or rotating by 90 degrees can all be done by
changing the starting register and the step size (positive or
negative) of the gather operation.

4.2.5  2D Lines

The operation is to draw a 16 pixel long Bresenham line.

/* perform a Bresenham iteration and
calculate the address offsets */

plot(Rbase, Rdelta, Roffset, 16)

/* indexed store to memory -- store
pixel to dst+offset */

stla(dst, Roffset, Rpixels, 16)

The plot instruction calculates the offsets which are used by
the stla instruction (store-long-array) to store the pixels.



Memory can be accessed in direct or array mode. In direct
mode, consecutive words in physical memory are accessed.
In array mode, an offset vector is used for calculating the
effective addresses of the memory words to be accessed.

Bytes can be accessed in four formats: normal bytes, quad
bytes, channel bytes and packed bytes. Quad bytes are used
for processing each channel of a XBGR raster separately.
Channel bytes are used for processing one channel of the
XBGR raster. Packed bytes are useful for data movement or
efficient logical operations on 8 bit data.

 store with mask, plane and clamp controls, which enable-
masking of elements within a vector, masking of bits within
an element, and, for short and byte elements, clamping
between predetermined minimum and maximum values.In
addition, a store select option allows the data written to be
selected from the elements of one of two destination vectors.

name description

ld[b|s|c|q|l|p]d load bytes, shorts, every 4th byte, unpacked XBGR, longs or
packed bytes to registers from base address

ld[b|s|q|l]a load bytes, shorts, unpacked XBGR or longs to registers from
base address plus offset from vector

st[b|s|c|q|l|p]d store registers as bytes, shorts, every 4th byte, packed XBGR,
longs or packed bytes to base address

st[b|s|q|l]a store registers as bytes, shorts, packed XBGR or longs to base
address plus offset from vector

Memory operation variations

precision load and store operations allow signed and unsigned shifts to
support 32.0, 24.8, 16.16 and 8.24 fixed point formats

conditional
store

store operations include mask-based conditional store, mask-
based store select, and store through plane mask

clamp clamp to 8 or 16 bit signed or unsigned format on store

write writes a value into a register

via the instruction queue

Table 2 - Memory Operations

The SX can load byte and short elements with sign exten-
sion, as well as with predetermined left shifts.  The SX can

Memory pixel format Register format Sign and scaling

8 bit one pixel to one register signed or unsigned

left shifted 0, 8, 16, or 24 bits

16 bit one pixel to one register signed or unsigned

left shifted 0, 8, or 16 bits

32 bit one pixel to one register as is

8 bit (packed) 4 8-bit pixels to one register as is

XBGR (4 8-bit pixels) one pixel to four registers signed or unsigned

left shifted 0, 8, 16, or 24 bits

XBGR one channel (X, B, G, or R) of
one pixel to one register

signed or unsigned

left shifted 0, 8, 16, or 24 bits

Table 3 - SX Data Formats

4.1.11  Write

The write instruction places a value into a
register. This is done through the instruction
queue in order to ensure that the register value
is synchronized with subsequent queued
instructions.



sources zero and as a destination, discards data. The immedi-
ate value range is from -64 to 63.

4.1.1  ALU Unary and Binary

These instructions perform basic unary and binary opera-
tions. One source vector is necessary; for binary operations,
the second operand may be another vector, an immediate
operand specified in the instruction, or a scalar. The result of
the operation is placed in the destination vector.

4.1.2  Sum and Dot

Sum adds the elements of a source vector and a scalar and
stores the result in a scalar. Dot multiplies corresponding ele-
ments of two source vectors and stores the sum of the prod-
uct in a scalar. For dot, the options are the multiply precision
(16x16 and 16x32), the rounding, and the scaling (0, 8 or 16
bits).

Dot can be used to implement digital filters.

4.1.3  Saxpy

In this instruction, the elements of the source vector are each
multiplied by the value in the SCAM register and added to
the elements of a second vector. The result is placed in the
destination vector. The options are the multiply precision
(16x16 and 16x32), the rounding, and the scaling (0, 8 or 16
bits). Saxpy is useful in many image processing operations
such as convolution and color space transformation.

4.1.4  Shift

These instructions perform arithmetic, logical and funnel
shifts. Arithmetic and logical shifting is performed by shift-
ing the bits of each element in the source vector by an
amount specified by the immediate operand, or by the ele-
ments of a vector. Funnel shifting is performed by shifting
across source vector elements by an amount specified by the
scalar or immediate operand.

Funnel shift can be used to align one bit rasters.

4.1.5  Compare

These instructions compare the elements of a vector to those
of another vector or a scalar. The functions (==, <=, <, >=, >)
are available for vector comparisons, and (==, <, >) are
available for scalar comparisons. The mask register is set as
a result of the comparison: a “1” is written to bits corre-

sponding to those positions where the result of the compari-
son is true, and a “0” otherwise. These operations can be
used for thresholding an image, for example.

4.1.6  Scatter and Gather

Scatter places consecutive elements from its source vector in
nonconsecutive elements into the destination; the distance
between each nonconsecutive element is specified as an
immediate value, positive or negative. Gather is similar
except it takes nonconsecutive values and places them con-
secutively in the destination.

These instructions can be used for zooming and transposing
images.

4.1.7  ROP

This instruction performs a raster operation (rasterop)
between two source vectors into a destination vector. The
actual function performed is dictated by the content of the
ROP register. Boolean operations between pixels can be per-
formed by the rop instruction.

4.1.8  Plot and Delt

The plot instruction performs Bresenham interpolation [3],
and creates a vector of offset values from the base offset,
base error, and major and minor offsets and error deltas. The
delt instruction adds four delta values to four successive ele-
ments in the source vector. For example, plot followed by
delt allows computation of pixel addresses and values for a
linearly shaded 2-D line which is then drawn by an array
mode store.

4.1.9  Selection

This instruction selects between the elements of two source
operands to write into the destination vector. Selection is dic-
tated by the bits of the Mask register. Source operands can be
vectors or scalars, and selection on a byte-by-byte basis is
also allowed.

4.1.10  Load and Store

These instructions insert and extract long and short words
and bytes to and from memory. There are many attributes of
the load and store operations of the SX. The important ones
are described below.



Unfortunately, consistent MBus activity could keep the
SXPP from ever accessing memory. To avoid this Pixel Pro-
cessor memory activity is specially monitored. When an
SXPP read or write request appears on GRIF, a counter is
started. If the counter exceeds a registered impatience count,
the GRIF operation will be executed next. This allows some

4.0  Instruction Set

The instruction set is divided into two categories, processor
instructions which are executed in the ALU’s and multipli-
ers, and memory operations which are handled by the Load/
Store logic through the GRIF. These are summarized in
Table 1 and Table 2 and described in the following section..

name description

ALU unary and binary operations

add[v|s|i] add vector, scalar or immediate to vector

sub[v|s|i] subtract vector, scalar or immediate from vector

or[v|s] bitwise or of vector or scalar to vector

and[v|s|i] bitwise and of vector, scalar or immediate to vector

xor[v|s|i] bitwise xor of vector, scalar or immediate to vector

abs absolute value

mul multiply vectors

Vector to scalar operations

sum sum vector to scalar

dot dot product of two vectors to scalar

Shift operations

sra[v|i] shift vector right arithmetic by vector value or immediate

srl[v|i] shift vector right logical by vector value or immediate

sll[v|i] shift vector left logical by vector value or immediate

slf[s|i] funnel shift left logical by scalar or immediate

Compare, Select and ROP operations

cmp[v|s] compare (>,≥,≤,<,=) vector with vector or scalar and set bits in
mask register (MASK)

sel[v|s|b] select between elements of two vectors, two scalars or corre-
sponding bytes of two scalars based upon bits in mask regis-
ter (MASK)

rop[l|b|m] rasterop of two vectors based on logical (32bit word-wise),
bytewise, or bitwise interpretation of mask register bits

Miscellaneous operations

saxp multiply of vector and scalar (in SCAM register) with vector
offset to vector

scat scatter vector (adjacent registers) into registers

gath gather registers into vector (adjacent registers)

delt add four delta values to 4-component vector

plot Bresenham interpolation to vector
Table 1 - Processor Operations.

4.1  Description of Instructions

In addition to its data registers, the SXPP contains some spe-
cial registers. These are: the SCAM register, used to hold the
constant for saxp; the MASK and PLANE registers, used by
store; and the ROP register used by rop. Also, register zero

SXPP memory operations in even the most heavily
loaded MBus streams.

Since the SXPP acts on vectors of data, its opera-
tions are generally much longer than the cache-line
based MBus operations. The VRAM access modes
make this difference more marked. The longest
SXPP memory request can take over a hundred
cycles to complete, as compared with a maximum
of twenty cycles for MBus. While an MBus write
would simply be placed into the write buffer, and
MBus read might have to wait for one of these
SXPP operations to complete before it can be
acknowledged. To avoid locking up the MBus,
read operations can force an abort of an SXPP
operation. When the read has completed, the pixel
processor’s operation is restarted with the next ele-
ment.



the data is read from memory, it is passed out to Mbus.

The primary concern for Mbus operations is the read latency
time for burst reads. The performance of CPU’s with small
caches suffers markedly as this latency increases.

3.2.1.2  The GRaphics InterFace (GRIF)

The GRIF protocol calls for address/data pairs for writes.
This allows writes of any pattern. The reads come across as
64 bit addresses.

The primary concern for GRIF operations is throughput on
writes. Screen fills and copies, and most drawing is limited
by the write rate to the frame buffer.

3.2.2  Memory Types

The DRAM has 8 ECC check bits for every 64 bits of data. If
a write of less than 64 bits is needed, a 64 bit read is per-
formed, those 64 bits are checked and composed with the
write, and 64 bits are written.

The VRAM memory has both bit write mask and byte write
enables. All VRAM reads pull 128 bits of data at a time. The
VRAM is also multiply mapped. Any location in VRAM can
be accessed (either a read or a write) in one of several
modes. The most straightforward is 32 bit chunky mode,
where 32 bits pixels are read in, one after the other. There is

also 16 bit planar mode, where every other byte is read, and
the pack/unpack logic forms the data into a continuous
stream. The third mode is 8 bit planar, where every fourth
byte is read

These different modes allow software to manipulate the true
color frame buffer as an eight bit or sixteen bit display, or for
support of pseudo-color displays. The eight bit mode is use-
ful for running eight bit applications in one color channel, or
for manipulating the overlay data in an XBGR pixel. The
sixteen bit mode can be used in medical applications where
pixels are often ten or more bits deep, or for a 16 bit frame
buffer with 8 color bits and 8 overlay bits. In that case, the 16
bit mapping can be used to access only the color, or only the
overlay section of the display memory.

3.2.3  Memory Arbitration

With both the GRIF and MBus interfaces, the SX Memory
Controller has two sources of requests for memory access. If
an operation goes unacknowledged on the MBus, none of the
MBus devices will be able to operate. This will stop access
to the memory, writes to the SXPP, and all I/O. An unac-
knowledged GRIF operation will only stop the SXPP.
Because of this, MBus operations are given higher priority.
Whenever there are both types of requests pending, the
MBus request is executed next.

.

8 Bit Planar

16 Bit Planar

32 Bit Chunky

Figure 11 - VRAM Access Modes



(R&R) rather than a normal cycle termination. The R&R
tells the Mbus arbitration logic to allow the host processor to
resend the instruction after any pending bus requests by
other Mbus masters are serviced. This prevents any lengthy
SX occupancy of the Mbus which would block an Mbus
master’s attempted access to either memory, I/O, or some
CPU’s cache. The R&R is also used by the SXPP to break up

3.2  SX Memory Controller
The memory controller needs to not only supply data to the
pixel processor, but also provide for the memory require-
ments of a high speed, multi-processor workstation. There
are then two interfaces into the memory controller. One is
vector based, and the other cache-line based. There are also
two types of memory. One is DRAM with ECC, the other is
byte accessible VRAM.the lengthy bus access cycles required for cer-

tain rare operations to keep bus occupancy at
a minimum. Since the SXPP resides on a
multi-processing bus, hardware is included to
prevent another processor’s accessing the
SXPP in the middle of a cycle broken up by
an R&R.

The SXPP can be viewed as a load-store
machine. SXPP vector instructions can be
classified as immediate-register, register-reg-
ister, or register-memory /memory-register
types of operations. Register-register instruc-
tions require one 32 bit entry within the IQ.
Since Mbus is a 64 bit wide bus, the SXPP
allows either one or two of these types of
instructions to be sent over the bus and placed
into the IQ at one time. The immediate-regis-
ter instructions use two entries if 32 bits is to
be written into an SXPP register or three
entries if 64 bits is to be written into two
SXPP registers. Register-register and immedi-
ate-register instructions are written to a single
Mbus address assigned to the SXPP IQ.

Memory access instructions require two IQ
entries. A process using the SXPP Memory
access instructions require two IQ entries. A
process using the SXPP specifies the virtual
address of the memory locations to be
accessed. The process writes the memory
instruction operation code to a region of vir-
tual address space which is entirely mapped to
the SXPP instruction queue. This results in a

translation of the virtual address to be accessed by the SXPP
and transmission of the memory instruction operation code
over the Mbus to a 36-bit Mbus address. The lower 32 bits
are the physical address to be accessed by the SXPP instruc-
tion and the upper 4 bits tell the SXPP to recognize the oper-
ation as a write to the SX instruction queue. The result of this
is that the SX does not require an MMU and system
resources are effectively shared.

Finally, the SXPP contains various control/status registers
used to control the flow of instructions, set operation modes,
and provide limited error checking and performance moni-
toring.

Figure 10 - SX Memory Controller Block Diagram

MbusGRIF

Address Fifo
Grfx Decode
& Buffer Write Buffer

ECC inECC out

Composition
& Packing

Memory

Mem ControlMem Buffers

Control Regs

Data Bus
Address Bus

Unpacking

3.2.1  Bus Interfaces

3.2.1.1  Mbus

When an Mbus write to memory is detected, the address is
latched into the Address Fifo, and the data is placed into the
Write Buffer. The Mbus then is free to proceed with the next
operation, and the data is committed to memory at the next
opportunity.

When an Mbus read is detected, the address is again latched
into the Address Fifo. All outstanding transactions are com-
pleted, while the Mbus waits for the data to come back. As



memory data item comes back from the memory controller.
For the SX store instruction, there is never anything written
back to the register file as all the data are sourced to the
memory controller to be written back to the system memory.

resource and data requirements are extracted and then com-
pared with the current state of the machine in the hazard
detect subunit. When all resource and data are available, the
pending instruction is launched. Note that for SX processor

Figure 9 - Store Pipeline

A Typical Store Instruction Pipeline in Direct Offset Addressing Mode(16 byte source vector)
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Concurrent Operations

Decode Instruction, Load Base Physical Address, Compute Register File Pointers, Load Vector
Count, Load Memory Offset
Fetch Data from Register File, Compute Vector Count, Compute End Byte Address Offset

Clamp, Format & Steer Data, Prepare next Mask, Check Vector Count, Check Unix Page Crossing,
Check Ram Page Crossing, Update Byte Write Mask
Compute Register File Pointers, Compute Byte Address Offset

Fetch Data from Register File, Compute Effective Physical Address, Compute Vector Count

Clamp, Format & Steer Data, Check Unix Page Crossing, Check Ram Page Crossing, Update
Byte Write Mask, Prepare Next Mask, Check Vector Count
Memory Data Address Valid, Memory Data Valid, Store

An example of the SX store pipeline operation is shown in
Figure 9:. Only a single operation is shown, although in
practice different operations can be in different pipe stages at
the same time. Note that a load goes through a similar pro-
cess, but does not source data from the register file, and a
separate machine writes the data back into the register file.

3.1.4  SXPP Control Unit

The various functional units of the SX are controlled and
coordinated by the SXPP Control Unit (SCU). The goal of
the SCU is to provide maximum utilization of the hardware
resources of the SXPP, while preserving instruction stream
integrity. The SCU is responsible for launching instructions,
and detecting hazards (structural and data) in the instruction
stream. The SCU interfaces with the various blocks of the
SX through control lines which transmit commands and
monitor the status of each functional block.

The SCU is comprised of three basic subunits: a master state
machine, instruction decoder, and hazard detector. Instruc-
tions from the FIFO are decoded in the instruction decoder
block in two clock cycles. During instruction decode, the

operations all instructions are non-blocking, i.e. once started
they do not stall. This is not the case for SX load and store
operations in which data is transferred across the asynchro-
nous GRIF interface to memory. A primary function of the
hazard detect block is to insure the range of registers
required for the pending instruction will be available when
the pending operation requires them. Thus the pending oper-
ation may be launched prior to completion of the previous
instruction even when the source operand registers of the
pending instruction are destination registers of the preceding
instruction.

3.1.5  SXPP Mbus Interface

A 64 entry instruction queue (IQ) is used to hold instructions
issued by a host CPU to the SXPP. An SXPP instruction
requires either one, two or three IQ entries depending upon
its type. Unless the IQ is full, all instruction writes into the
IQ are quickly acknowledged. Since it is possible for the
host instruction issue rate to exceed the SXPP instruction
execution rate at times, the SXPP indicates the IQ is full by
terminating the Mbus cycle with a relinquish and retry



results are written back into the register file.

Figure 7 - A Typical ALU Instruction Pipeline
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Figure 8 - Load/Store Operations
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3.1.2  The Register File

The register file is the source and destination of the
vector elements on which the SX instructions oper-
ate. It is, in essence, the central data cache for the
graphics and imaging acceleration engine. It is com-
posed of four interleaved banks of 32 entry, dual
read ported, 32-bit wide registers. This gives a total
of 128 registers.

All the registers can be read and written by instruc-
tions using register numbers to specify the registers
of interest. The data select logic in front of the regis-
ter file allows data loaded from memory or a data
stream supplied by one of the processing units to be
written into the register file. The cross bar at the out-
put of the register file routes the data fetched from
the register file to the execution units for processing.
This is also where immediate values and scalar val-
ues are introduced into the vector stream, by select-
ing the value instead of one of the streams coming
from the registers.

3.1.3  The Load and Store Unit

The load unit executes a set of instructions that handle a
variety of data types encompassing the range of pixel types
and memory data formats the SX can process. It receives the
incoming memory data vector from the graphics data path
and then formats and steers each element of the vector into
the register file.

Likewise, the store unit executes a set of instructions for a
variety of data types. It extracts each vector element from the
register file, clamps (if required) formats and steers them
into a memory data stream before transporting them to the

The functions of the load and store units are illustrated in
Figure 8:. The memory data is represented by a stream of
data items. For the memory load operation, the stream of
memory data items is the source and the register file is the
destination where the data items are organized in a vector
form. The register file is the source and memory is the desti-
nation during memory store operations.

The instruction pipelines for the load and store operations
are similar to that of the basic ALU instructions. However,
the writeback stage is not necessarily the time that the results
are written back to the register file.

For the load instruction, the writeback occurs when the



The two multipliers and their two adders can be used
together to do a single 16x32 multiply. Because of the units
feeding each other, the throughput is halved, and the latency

The adder supports add, subtract and absolute value opera-
tions. The shifters support logical and arithmetic shifts, as

is increased.
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Figure 5 - 16x32 Multiply Pipeline

3.1.1.2  ALU’s

The SXPP has two nearly identical ALU’s. Each one con-
sists of a shifter, an adder, a comparator and a logical unit.

well as funnel shifts which shift entire vectors
as one large operand. The comparators com-
pare, and the rop logic does all of the logical
operations, such as Selects, AND’s, NOT’s,
and the like. Normally data comes in through
the four buses (A and B operands for X and Y
ALU’s) and XA and XB are operated on
together by the X ALU, while YA and YB are
used by the Y ALU.

The two ALU’s differ in the way they handle
certain special instructions. The SUM instruc-
tion, which produces a single result, is only
done in the XALU. The Bresenham PLOT
operation computes the error in one ALU, and
the offset in another. Compare instructions
built up a mask based on their results which is
computed in the X shifter. But the majority of
operations are executed by both the X and Y,
two results being produced each cycle.

The execution of typical ALU instructions is
more straightforward than even the 16x16
multiply. The data comes in, and every cycle
two pairs of data are operated upon, and

Figure 6 - SXPP ALU’s
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and add the two vectors together, each performing one add
per cycle. The resultant sum vector would be written back
into the register file.

Figure 4 - 16x16 Multiply Pipeline
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Figure 3 - SX Pixel Processor Block Diagram
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3.1.1  Processing Units

There are four processing units, two multipliers and two
ALU’s. The two multipliers (Xmult and Ymult) act inde-
pendently for simple instructions, and can be used as a
pair for more complex operations. Similarly, the two
ALU’s (Xalu and Yalu) can act by themselves or in con-
cert, depending on the complexity of the instruction.

3.1.1.1  Multipliers

Each multiplier unit is made up of a 16x16 pipelined
multiplier and an associate adder. The combined multi-
plier/adder allows rounding of results, dot instructions,
and saxpys. Note that it takes two cycles to get a result
from the pipelined multipliers.



3.0  SX Architecture
The SX chip is made up of the SXPP and SXMC. Each of
them connect to the MBus; the SXPP for instructions, and
the SXMC for memory read or write operations. The SXPP
makes requests to the SX Memory Controller through the
Graphics Interface (GRIF). The high bandwidth of GRIF
allows the pixel processor to manipulate vectors of data.

3.1  SX Pixel Processor
The SX Pixel Processor is an integer vector processor. It acts
as a coprocessor to a CPU, executing the instructions passed
to it on MBus. Combined with a fast memory interface, the
SXPP is designed to handle the inner loop code of many
algorithms. It can read data in, act on it, and store it to the
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Figure 2 - SX Block Diagram

Missing from the SX are a floating point unit, a dedicated
edge walker, a Z-buffer interface, a DSP, or any large func-
tion-specific logical block. Floating point is handled by the
CPU, edge walking can be done in the SXPP or CPU, an
effective and inexpensive Z-buffer can be implemented
through main memory, and most graphics, imaging and visu-
alization algorithms can be executed in the SXPP. While it
would be faster to have each of these units specifically
implemented in hardware, it would be prohibitively expen-
sive. The SX can accelerate a wide range of applications at
only the cost of an increase in memory controller die size.

display memory or main memory. The instructions set cov-
ers mathematics, logic and graphics, but has no loop or
branch instructions.

There are five major portions of the SX Pixel Processor.
They are the Mbus interface which handles bus interface and
instruction storage, the SX Control Unit which manages
setup and sequencing, the Register File which contains the
128 registers used as source and destination for the opera-
tions, the Processing Units which execute all of the arith-
metic and logic instructions, and finally the Load/Store block
which handles all of the memory read and write requests
across the GRIF.

If an arithmetic operation, a vector add for example, were
sent to the SX, it would be taken from the MBus, and placed
into the instruction queue. When its turn came, it would be
passed to the control unit and would be launched once all of
the necessary resources were available. The two source vec-
tors would then be read from the register file, and sent out on
the data buses. The Xalu and Yalu would take the data in,



2.0  Target System

The target system includes one to four SuperSPARC proces-
sors on a 64-bit interprocessor bus (Mbus), and the SX chip
which handles accesses to main memory (DRAM) and video
memory (VRAM) on a 128-bit memory bus. The memory
management units (MMU) are the SPARC Reference MMU
contained within each SPARC CPU chip. They perform vir-
tual to physical address translation and provide process pro-
tection.

color lookup tables, hardware cursor support, transparent
overlay support with blending, and fully programmable
monitor timing. A video SIMM containing the MDI, 4MB
VRAM, a three channel 10-bit DAC, a pixel clock generator
and other miscellaneous support logic provides video signals
required for a 76 Hz 1152X900 true color display with 32-bit
pixels. The architecture supports up to 4 video SIMMs.

Figure 1 - The Workstation Architecture
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The system processors and I/O devices interface to the SX
through the Mbus. Mbus is a synchronous 64 bit, multi-
plexed address-data, circuit switched bus supporting multi-
ple masters. Shared memory multiprocessor support is
accomplished with a write-invalidate cache consistency bus
protocol. The SXPP and SXMC portions of the SX both
have Mbus control logic allowing them to connect to the sin-
gle Mbus interface of the chip operating semi-autonomously.

The memory interface is 128 bits wide, and uses the RAS/
CAS protocol common to most dynamic memory. There are
16 extra bits which are used for ECC on DRAM, or byte
write enables on VRAM. While the two types of memory are
handled differently by the SXMC, the differences are not
exposed to the CPU’s or SXPP which can access either type
of memory.

The display subsystem of the workstation is based on the
Memory Display Interface (MDI) chip. It is a high perfor-
mance video display controller featuring up to three 24-bit

The I/O subsystem of the workstation is based on the Sbus
which is connected to the memory bus by the Mbus to Sbus
Interface chip (MSBI). The workstation provides four Sbus
slots and also comes complete with the same rich set of inte-
gral I/O devices: Ethernet, ISDN ports, serial ports, parallel
port, digital audio, SCSI, floppy disk, and keyboard/mouse.



Abstract

This paper describes the SX graphics accelerator. It is a pro-
grammable processor built into a workstation memory sys-
tem. The goal of the SX is to achieve performance
comparable to that of low end 2D and 3D graphics proces-
sors and to surpass low end imaging performance, at the
lowest possible cost.

The SX contains an integer vector processor, with an instruc-
tion set tailored to the needs of image processing and multi-
media as well as 2D and 3D graphics. It can directly access
data in both video and main memory, allowing accelerated
processing on images up to 512 Mbyte in size. The SX offers
a cost-effective method of providing a rich graphics and
image processing capability compared to traditional work-
station and accelerator approaches.

1.0  Introduction
There has been a trend of demand for the contemporary
workstations to provide imaging capabilities in window sys-
tems [7 [5] as well as to support the video display service in
the underlying transport media such as the e-mail [2]. One
solution has been to enhance the graphics and imaging per-
formance of the workstation by adding the special purpose
acceleration engines. The added hardware performs some or
all of the stages of specific classes of algorithms such as 2D
rendering [6], 3D rendering [1][5], image processing [4], or
video compression [3]. This solution also adds to the cost,
while only helping those features supported by the special-
ized option.

The first design goal for this project was to provide a work-
station which achieves performance comparable to that of
machines with low-end 2D and 3D graphics processors, and
surpassing low-end imaging machines. The second goal was
that this be achieved with only a small incremental cost over
an unaccelerated workstation. By implementing an integer

vector processor within a traditional error correction code
(ECC) memory controller, both of these goals were met.

The SX chip architecture offers a cost effective method of
providing a rich graphics and image processing capability in
a workstation comparing favorably with those approaches
using the add-on acceleration options for specific applica-
tions. The SX Pixel Processor (SXPP) has an instruction set
which is tailored to the needs of image processing and multi-
media applications as well as 2D and 3D graphics. The SX
Memory Controller (SXMC) allows the SX Pixel Processor
to directly access data in both video and main memory, while
still filling the role of system memory interface. This organi-
zation enables the SX Pixel Processor to provide accelerated
processing of any image which will fit into the 512 Mbyte
main memory.

In addition, the inclusion of the SX chip in a workstation off-
loads the burden of performing the graphics operations with
the CPU. One most visible benefit is that the operations
accelerated by the SX chip do not allocate cache lines and
hence do not interfere with other CPU operations. Also the
memory bus is not congested with the transfer of large
images to and from the screen.

The following sections describe the workstation which hosts
the SX chip, the functional blocks and pipelines of the SX
Pixel Processor and SX Memory Controller, the vector
instruction set for the SXPP, and the performance of the
overall system.
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