L essons Learned Tuning the 4.3BSD Reno Implementation of the
NFS Protocol

Rick Macklem
University of Guelph

ABSTRACT

Since its introduction by Sun Microsystems in 1986, the NFS protocol has
become the defacto standard distributed file system protocol for Unix based worksta-
tions. Most of these Unix implementations are based on the reference port provided by
Sun Microsystems. Research published to date on NFS performance has focused on the
problems of NFS server write performance and NFS server performance characteriza-
tion. This paper discusses other performance and implementation aspects of NFS
observed while tuning a rather different implementation of the Sun NFS protocol for
Unix. Aspects of performance related to differences in caching mechanisms, the use of
different RPC transport protocols and techniques that minimize memory to memory
copying are explored. In particular, the notion that TCP transport would provide unac-
ceptable performance for NFS RPCs is shown to be unfounded.

Introduction

There are several aspects of the 4.3BSD Reno implementation of Network File System (NFS)?! that
set it apart from the Sun reference port.2 In the 4.3BSD Reno implementation, particular emphasis has
been put on caching mechanisms, network transport layer independence and the avoidance of memory to
memory copy operations. To minimize memory to memory copying and retain network transport layer
independence, the NFS remote procedure call (RPC) requests and replies are handled directly in mbuf3
data areas. Network transport independence permits experimentation with running NFS over other proto-
cols, including TCP. As such, it was felt that by benchmarking this implementation of NFS, we could
gain insight into various aspects of performance that have not yet been adequately addressed.

This paper describes the results of benchmarking and tuning in three major areas:
. Server CPU overheads

. Effects of transport protocols

. Effects of different caching mechanisms

In Section 1, a brief overview of the NFS protocol is presented, followed in Section 2 by an over-
view of the 4.3BSD Reno NFS implementation. Section 3 discusses techniques used to reduce server
CPU overhead. Section 4 compares the performance of NFS over a variety of transport protocols operat-
ing on three different internetwork topologies. Following this, a comparison in Section 5 of 4.3BSD
Reno NFS with Ultrixt NFS is used to identify significant differences related to caching mechanisms.
The conclusion summarizes the results and suggests areas of distributed file system performance that

1 NFS isatrademark of Sun Microsystems Inc.

2 Along with the published NFS specification, Sun Microsystems licensed a reference port of NFS which forms the
basis of most commercially available NFS systems. Since | have no access to this code, information about its structure
was gleaned from a variety of publications. Apologies for any inaccuraciesw.r.t. this port.

3 mbuf is the Berkeley Unix structure for handling network buffers.

T MicroVAXII, DECstation and Ultrix are trademarks of Digital Equipment Corporation

require further investigation.

1. Overview of NFS Protocol

The NFS protocol is a remote procedure call (RPC) based distributed file system that does 1/0 at
the level of logical blocks of files. These data blocks start at an arbitrary byte offset and range in size
from 1 to 8192 bytes. The server is stateless, which implies that RPC requests are atomic operations
where all request related information must be stored in the RPC request. The stateless server concept was
used so that crash recovery is trivial. However, there are some obscure implications on performance in
the areas of client cache consistency and write policy.4 The write policy for NFS is asynchronous for full
blocks and delayed when partial blocks are written. The delayed writes must be pushed when the file is
closed and are also pushed every 30sec for most Unix® implementations. Cached data consistency is
maintained with the server by checking that the file's modify time has not changed since the cached data
was read from the server. Since most implementations also cache file attributes for a few seconds, this
implies that cached data will be consistent with that of the server to within a few seconds. However, the
stateless server does not know about any delayed writes to a file from other clients. By pushing delayed
writes on close, NFS maintains a close/open consistency criteria when more than one client read/write
shares afile. That is, aclient opening file "X" for reading after another client that was writing to file "X"
does a close, is guaranteed to see those changes.

The NFS RPCs are done using Sun RPC, which stores all fields of the requests and replies in an
architecture-independent data format, called the external data representation (XDR). For the Sun refer-
ence port, a user mode runtime library that implements these layers, was ported into the kernel, and NFS
was implemented using this library interface.

2. 4.3BSD Reno NFS Implementation

The 4.3BSD Reno NFS is implemented in the kernel without the use of any XDR or RPC interface
layers. All NFS RPC requests and replies are constructed and decomposed directly in mbuf data areas
using two macros nfsm_build and nfsm_disect. These two macros are then used by higher level func-
tions and macros to access the fields of the NFS RPC request and reply packets. Most of the translation
to/from XDR is done by inline code, except for a few special cases that are handled by functions. There
were two reasons for this approach, namely to:

. Avoid the use of a buffer that would have to be copied into an mbuf list.

. Avoid the need for a special type of mbuf that might not work well with transport protocols other
than UDP.

Once the request or reply has been converted into an mbuf list, the list is passed onto the socket interface
code which deals with the vagaries of the various types of sockets. For datagram sockets, the client side
provides round trip timeout (RTO) estimation and requests retransmission upon timeout. For stream
sockets such as TCP, it maintains the connection and provides record marks between each RPC
request/reply, along with concurrency control on the socket 1/0O routines.

Caching is done for name lookups, data blocks and directory blocks, using the VFS caching
mechanisms which are discussed in greater detail in Section 4. The client side cache consistency is con-
trolled by the file/directory modify time, and cached data is flushed whenever the modify time changes,
as reported by the server. The file attributes are cached and time out five seconds after being updated
from the server. This appears to be similar to the level of consistency that was observed experimentally
on a SunOS NFS client.

4 Write policy defines the client action when a write to a remote file is done. It may be write through which implies:
do the write RPC and wait for the reply before returning from the system call. Asynchronous, implies start the write
RPC but do not wait for its completion. Delayed means do the write RPC sometime later.

5 Unix isatrademark of AT&T

-3-

3. Server Structural Changes and CPU Over head

Most current NFS servers tend to be CPU bound, which makes minimizing server CPU overhead of
interest. To study this, the kernel of a system that was running under heavy NFS server load was profiled
to identify bottlenecks. It was observed that over a third of the CPU cycles were being used by the low
level network interface handling code. In particular, the routine that copied the mbuf data areas to the
network interface’'s transmit buffers was at the top of the CPU utilization list.

In an effort to reduce CPU overhead in the network interface code, two changes were made:

. Network interface buffer handling was modified to alow the mapping of a packet to two noncon-
tiguous buffers for transmission, one for the IP fragment header and the other for the mapped mbuf
data clusters. This allowed the copying of mbuf clusters to network interface buffers by page table
entry swaps instead of by actual memory to memory copying.

. The network interface device driver was modified to remove the transmit interrupt service routine.
Since this routine simply released buffers and updated 1/0 statistics, it was possible to disable
transmit interrupts and perform the operations in the transmit startup routine, reducing the number
of network interface interrupts. [Jacobson89] The transmit startup routine was also fine tuned by
careful use of register variables and unrolling of loops.

After the above changes, CPU overhead was reduced by approximately 12%. Most of this was a reduc-
tion in memory to memory copying. Since memory to memory copy bandwidth has not grown with
MIPS rate for many recent computer systems [Ousterhout90], this may be even more significant on newer
hardware architectures.

At this point, the CPU bottlenecks were the network interface startup routine, the internet checksum
calculation routine and the routine that copies data between the buffer cache and mbuf clusters. Since the
first two bottlenecks have already been fine tuned, the only area that deserves further attention is the third.
It may be possible to avoid the buffer cache to mbuf cluster copying by implementing a mechanism
where page clusters in the buffer cache may be borrowed as mbuf page clusters and returned after net-
work transmission. This was not done, due to the complexity of the code, but is a possible area for
further work.

4. RPC Transport |ssues

The NFS protocol normally runs on top of UDP transport where each RPC request and reply is
packaged in one UDP datagram. Since UDP datagrams are not delivered reliably, the NFS client sets a
retransmit timeout (RTO) when a request is sent and resends the request if the RPC reply is not received
within the RTO. The initial RTO is set to a constant value defined at mount time and is backed off
exponentially upon retransmits. This transport mechanism is adequate when the client and server reside
on the same high bandwidth LAN cable, but performance has been observed to deteriorate over more
complex internetwork connections. [Nowicki89] This problem stems in part from the fact that an 8Kbyte
read or write RPC must be transmitted as | P fragments the size of the interconnect’s Maximum Transmis-
sion Unit (MTU). (eg. 6 IP fragments for an Ethernet) There are serious problems with 1P fragmentation,
such as the need to resend the entire datagram if any one fragment is lost in transit, making this a poor
transport mechanism for any but the most reliable network interconnects. [Kent87b] Since the 4.3BSD
Reno implementation is transport layer independent, an experimental evaluation of performance over
other transport mechanisms seemed appropriate.

The first alternate transport mechanism was a reliable virtual circuit (TCP) protocol with dynamic
RTO estimation and congestion control. [Jacobson88a] Although others, [Chesson87] had suggested that
CPU overheads might be excessive, it was felt that the advantages of reliable transport with congestion
control might outweigh the increased CPU overheads when using congested internetwork connections.
Early informal observations indicated that TCP ran well enough and led to further interest in the next
alternative.

The other alternate transport mechanism used UDP, but with dynamic RTO estimation and a
congestion window on outstanding requests modelled after that of TCP. The advantage of this approach
over TCP is that it does not break the NFS protocol and works with existing NFS servers. Trace data of
round trip time (RTT) for the NFS RPCs indicated that different RPCs had vastly different RTTs and that

-4-

the variance of big RPCs (Read, Write, Readdir) was higher than that of the small RPCs. (Getattr,
Lookup) As such, it was decided to do separate RTO estimation on the four most frequent RPCs, Read,
Write, Getattr and L ookup and use the constant value provided by the mount for the others. Since the
others occur infrequently, it was felt that dynamic RTO estimation was impractical. Also, since most of
these other RPCs are nonidempotent [Juszczak89], a conservative RTO is desired to minimize the risk of
redoing the RPC. This design was somewhat similar to [Nowicki89] who used three timers and an
overall estimation.t

The criteria for initial testing of these changes to UDP transport was that there should be no
significant negative impacts when compared with the old UDP transport running on a single LAN. Early
test runs showed that the retry rate for read RPCs was 2-4 times that of old UDP.

Two changes were made to bring the retry rate down:

. The calculation of RTO for the big RPCs (Read, Write, Readdir) was changed from "A+2D" to
"A+4D" to allow for the large variances.”

. The RTO was recalculated on every NFS clock tick instead of at request transmission time, so that
the most current values of A and D were used.

It was also found that "slow start" impacted performance and had to be removed from the code. As a
result, the congestion window on the number of outstanding RPCs is simply incremented by one for each
RTT upon reception of an RPC reply and divided by two upon a retransmit timeout.

The experiment consisted of running an NFS RPC load between a client and server interconnected in
three ways:

1 Both machines on the same uncongested Ethernet
2. Machines on two Ethernets interconnected by an 80Mbit/sec token ring and two IP routers.

3. Machines on two Ethernets interconnected by an 80Mbit/sec token ring, a 56K bs point to point link
and three IP routers.

The NFS load was generated by the Nhfsstone® [Legato89] benchmark using two different load mixes: a
100% lookup RPC and a 50/50 lookup/read RPC. Since the object here was to measure the effects of
different transport mechanisms, all that was required were big and small RPCs. Any RPCs that modify
the underlying file system were avoided so that the subtree would remain stable and not require reloading
between each test run. The 50/50 read/lookup load mix was selected since these are the most frequent
big and small RPC’s plus the fact that Nhfsstone requires a high percentage of lookup RPCs to function
well. The 100% lookup load mix was chosen to alow factoring out of the effect of lookups on the
above. Each point in graphs #1-5 represent a test of 30min, to avoid momentary variations caused by
other network loads. There were two runs done for each of the (transport, internetwork-configuration)
tuples and each of these is represented by a line on one of the graphs. Since these tests were run across
production networks during off peak hours, the other network loads were realistic but were not controlled
nor reproducible. As such, it is probably the shape of the curves that is more relevant than the RTTs of
individual data points. In the case of the 56K bps link, after hours involved almost no other loads.

6 My implementation was actually based on work done by Tom Talpey of the OSF. | was not aware of the work
done by [Nowicki89] until later. It was not obvious to me what Nowicki meant by overall estimation.

7 A isthe estimated mean and D the estimated mean deviation of RTT

8 Nhfsstone is a trademark of Legato Systems Inc.

Graph #1, Lookup mix Ave RTT (Config #1, 2 runs on an Ethernet)

70 @
© o
UDPrto=A+2D "
60 | UDPrto=lsec o
_E - 1"
TCP ”
50 |
0]
RTT (msec)
30|
20 |
10—
0 I I I T I T I T
0 10 20 30 40 50 60 70 80
Nhfsstone Load (rpc/sec)
Graph #2, Read mix Ave RTT (Config. #1, 2 runs on an Ethernet)
120
-
UDPrto=A+4D .8
_ _ - 2%
100 UDP rto=1sec L’
80 |
RTT (msec) 60 |
0]
20 |
0 T T T T T T
5 10 15 20 25 30
Nhfsstone Load (rpc/sec)
Graph #3, Lookup mix Ave RTT (Config. #2, 2 runs across 80Mbit)
100 UDPro=A+2D
UDPrto=lsec
_E -
TCP
80
60 |
RTT (msec)
0]
20—
0 I I I T I T I T
0 10 20 30 40 50 60 70 80

Nhfsstone Load (rpc/sec)

Graph #4, Read mix Ave RTT (Config. #2, 2 runs across 80Mbit)

250 i
UDPrio=A+4D
2001 UDPrio=lsec
150 |
RTT (msec)
100 |
50 |
0 T T T T T T
5 10 15 20 25 30
Nhfsstone Load (rpc/sec)
Graph #5, Lookup mix Ave RTT (Config. #3, 2 runs across 56Kbit)
350
300 |
250 |
200 |
RTT (msec)
150 |
100 |
50 |
0 T T T T T T
5 10 15 20 25 30
Nhfsstone Load (rpc/sec)
Table #1
Read Rate, large file (Kbytes/sec)
Config. #1 #2 #3
Transp. LAN 80Mbit 56Khit
UDP rto=A+4D 202 154 6.21
UDP rto=1sec 198 117 177
TCP 177 106 6.38

Graph #6 compares the server CPU overhead of UDP and TCP for an Nhfsstone read RPC mix and
Graph #7 is a sample trace of RTT and RTO equal A+4D for read RPCs.

CPU Util (%)

RTT/RTO (sec)

Contrasting Graph #1 with #3 and #5, Graph #2 with #4 and examining Table #1, a variety of observa-
tions can be made:

100

80

60

0.8

0.6

Graph #6, Read mix Server CPU Utilization

UbP
TCP

10 15 20 25 30
Nhfsstone Load (rpc/sec)

Graph #7, Read RPC RTT/RTO Trace across 80Mbit

*Graphs #1-2

*Graphs #3-4

9 The test machines were 0.9MIPS MicroVAXIIs and as such a small amount of processing takes several msec. (Also

See Graph #6)

820 840 860 880 900 920 940 960 980 1000
RPC Sequence#t

When both the client and server were on the same LAN, the method used to set RTO for UDP is
not relevant. The RTTs for TCP are higher by a fixed amount of approximately 7msec for lookups
and 10msec for the read mix until the server is under heavy load. For the read mix, much of this
increased delay can be attributed directly to the higher CPU overhead associated with TCP.
(7msec/rpc)® As for lookups, the increase in CPU overhead is only 1msec/rpc for TCP, so there
must be some other factor introducing real time delay.
DEQNA Ethernet interface, which is real slow)

When the client and server were interconnected through the 80Mbit token ring and gateways, the
differences start to become apparent. The TCP curves are almost identical, indicating a high degree
of stability. The curves for UDP with dynamic RTO estimation are somewhat more variable than

(Possibly more packets through the

-8-

TCP but with equal or better average RTTs, due to the lower CPU overheads. However, the curves
for UDP with a fixed 1sec RTO are more erratic, due to the long delays before retransmits. At first
glance, this would suggest that 1sec was too large, but examination of RTT trace data had peaks for
Read RPCs at close to 1sec, which suggests that lowering the constant would not be advisable.
The read rates for UDP with fixed RTO and TCP are amost the same, suggesting that the gains
resulting from congestion control are cancelled out by the delay introduced by the higher CPU
overhead. In this case, the simple congestion control added to UDP has improved read rate by
about 30% over the other transport methods.

. When running across the 56K bps link, the tests could only be run for the lookup mix.10 As graph
#511 and Table #1 indicate, UDP with a fixed 1sec RTO did not perform as well as either of the
others. In this case, TCP performed consistently well and UDP with dynamic RTO estimation and
congestion avoidance was often equal to TCP, but at times became unstable. The advantage of pro-
viding congestion control for this kind of network interconnect becomes apparent when you look at
the read rates in Table #1. The read rates for TCP and UDP with dynamic RTO and congestion
control are over three times that of UDP with fixed RTO.

There is another aspect of UDP transport for NFS and that is the choice of read/write data size. All
of the above tests were run with the default 8Kbytes, but there are situations where decreasing the
read/write size might improve performance. The difference in read rate between the two versions of UDP
transport across the 56K byte link suggests that a congestion avoidance scheme may be sufficient for most
situations, so that this is not normally required. Decreasing the read/write size increases the number of
RPCs and as such should be considered as a last ditch action when all else fails. Since the trick hereisto
avoid IP fragment loss, it may be possible to adjust the size dynamically, based on the IP fragment drop
rate. (This has not yet been tried, but is an area for further work.)12

5. Client Side Caching I ssues

The 4.3BSD Reno NFS implementation uses several caching mechanisms that are believed to be
somewhat different from those of the Sun NFS reference port. The 4.3BSD Reno VFS!3 layer buffer
cache is used by the NFS client to cache regular file blocks, directory blocks and symbolic links. There
are references to these cached blocks hanging directly off of the vnodes. For writing of partial buffers
there is no need to preread the blocks from the server, since there are additional fields in the buf14 struc-
ture for keeping track of the "dirty” region within the buffer. File attributes are cached in the associated
vnodel® structure and there is also a VFS layer name lookup cache in 4.3BSD Reno. Any performance
gains that could be related to differences in the caching mechanisms could suggest future work related to
caching mechanisms.

An experimental mount flag that disables all of the NFS cache consistency mechanisms was imple-
mented. Although operating NFS in this way is not practical in a production environment, it was done to
allow determination of an optimistic bound on performance of a system with a cache consistency proto-
col.18 This is of interest, since distributed file systems such as Sprite have been observed to outperform
NFS.17 [Nelson88] Another issue related to caching is, what is the best write policy?

10 The upper bound on the number of 8Kbyte reads over a 7Kbyte link is < 1/sec.
11 For one of the UDP rto=A+4D runs, the Ave RTT for 5rpc/sec was 721msec and therefore off the graph.

12 [Nowicki89] describes some difficulties w.r.t. dynamically adjusting read/write size, but does not explain how they
resolved the problems.

13 VFS refersto the Virtual File System described in [Kare!s36].

14 puf is the Berkeley Unix structure for handling block 1/O buffers.

15 vnode is the structure in Berkeley Unix for afile object. See [Karels86]
16 Essentially a cache consistency protocol without overheads.

17 Srinivasan et a were not able to achieve the performance gains of Sprite by adding a sprite like cache consistency
protocol to NFS. They believed that a major reason for this was the large number of lookup RPCs that predominated.
Since 4.3BSD Reno’'s name lookup cache reduces the number of lookup RPCs significantly, better performance improve-
ments might be expected.

-9-

The performance of a distributed file system implementation is closely coupled with network inter-
face, disk 1/0 subsystem and processor performance. As such, use of identical hardware is required to
isolate hardware related performance effects. A comparison with an implementation based on the Sun
reference port was performed by benchmarking a MicroVAXII running both 4.3BSD Reno and Ultrix
Version2.2. With these two systems as servers, Nhfsstone loads were run on them from a client on the
same LAN.

Graph #8, Default mix Ave RTT (Reno vs Ultrix)

160
Ultrix 2.2 .
140 43BSD Reno

RTT (msec) 80

60 |
0]
20|

0 I T T I T I I T I

5 10 15 20 25 30 35 40 45
Nhfsstone Load (rpc/sec)
Graph #9, Lookup mix Ave RTT (Reno vs Ultrix)
45
. Ultrix 2.2 .
40 4.3BSD Reno
357 4.3BSD Reno no name cache
30 | o
4
’
= 4
25 .a
L
RTT (msec) .8 .

20 Leiet
15|
10 |

5

0 T I T T T T T

20 40 60 80 100 120 140

Nhfsstone Load (rpc/sec)

-10-

Graph #10, Lookup mix CPU Util (Reno vs Ultrix)

100 Ultrix 2.2

43BSDReno
E—

80

CPU Util (%)

4.3BSD Reno no name cache g [t

20

40 60

T

80

T

100

Nhfsstone Load (rpc/sec)

Graph #7 showed significant differences between 4.3BSD Reno and Ultrix. In order to isolate the
basis of the differences, | ran further tests with 100% lookup and 50/50 read/lookup load mixes. The
most significant difference was the lookup RPC performance, as seen in Graphs #8-9. An obvious expla-
nation for the difference was the VFS name lookup cache on the 4.3BSD Reno server. However, disa
bling this cache only reduced the performance of 4.3BSD Reno by a small fraction of the difference
observed compared to Ultrix. A possible explanation for the remainder of the difference is that on
4.3BSD Reno, the directory blocks in the server's buffer cache are chained directly off of the vnodes,

reducing the CPU overhead for buffer cache searches.

For client side testing, the Modified Andrew Benchmark [Osterhout90] was used with both systems
mounting the same file system on the same server. Since amost any real work is CPU bound on a
MicroVAXII, the RPC counts in Table #3 are of more interest than the running times.

Table #2
Mod Andrew Bench MicroVAXII client (sec)
OS/Phase I-IV \Y
Reno 145 1253
Reno-TCP 143 1265
Reno-nopush 132 1208
Ultrix2.2 184 1183
Table #3
Mod Andrew Bench MicroVAXII client (RPC counts)
RPC Reno Reno-noconsist Ultrix2.2
Getattr 822 780 877
Setattr 22 22 22
Read 1050 619 691
Write 501 340 703
Lookup 872 918 1782
Readdir 146 144 150
Other 127 128 127
Total 3540 2951 4352

The biggest differences between 4.3BSD Reno and Ultrix were the number of lookups and the number of
reads. The VFS name lookup cache on 4.3BSD Reno has reduced the number of lookup RPCs by 50%.
This is significant, since lookup RPCs are usually the largest percentage of RPCs observed on production
servers. The number of write RPCs was reduced by over 50% by disabling cache consistency. This

120

140

-11 -

implies a big reduction in server load, since every write RPC requires 1-3 disk writes on the server. The
number of read RPCs for 4.3BSD Reno was 50% higher than Ultrix, and this can be traced to the fact
that the 4.3BSD Reno NFS pushes all "dirty" blocks to the server before it starts reading a file. The argu-
ment for this is that after doing a write RPC, the modify time has changed, but the client cannot tell
whether this modify was due to changes it made or to writes just done by other clients to the same file. It
appears that Ultrix assumes that other clients are not writing to the same file at the same time and there-
fore regards data in the cache as still valid. As such, it may be worthwhile to rethink the above con-
sistency criteria for 4.3BSD Reno.

The Modified Andrew Benchmark was also run on a DECstation 3100 against both servers to see
what effect the server differences would have on real work.

Table #4
Mod Andrew Bench DS3100 client (sec)
OS/Phase -1V V
Reno 88 180
Ultrix2.2 123 226

The results in Table #4 show a difference of 20-30% between the two servers.

To look at the effects of different write policies, the Create-Delete benchmark [Ousterhout90] was
run with and without cache consistency. The tests were run with zero, four and sixteen biods,18 to simu-
late different levels of asynchronous I/O concurrency. With no biods running, the write policy becomes
write through.

Table #5

Create-Delete Bench 4.3BSD Reno MicroVAXII (msec)

Config No data 10K bytes 100K bytes
Loca 120 216 1170
write thru 210 475 2401
async,4biod 216 470 1940
async,16biod 210 464 2094
delay wrt. 216 468 2230
no consist 218 244 329

When maintaining close/open consistency by pushing writes on close, the only time that selection
of write policy is significant is for large files. For the 100Kbyte file, it was observed that an asynchro-
nous write policy was about 20% faster than write through or delayed write. However, there is a big
improvement if you do not push writes on close!® due to the fact that there is usualy no need for the
write system call to block waiting for write RPCs to complete. Also, the number of write RPCs is
dramatically higher for asynchronous writes than for the delayed write without push on close, (Table #3)
suggesting that there is a good argument for this approach based on reduced server load. (Also see [Nel-
son88]) Note however, that to do this for a production environment would require the addition of some
sort of cache consistency protocol to NFS.

Conclusions

The performance of an NFS implementation is influenced by caching performance for the client and
caching plus CPU overhead for the server. Most current NFS servers have observed loads that are lookup
RPC dominant. A good lookup name cache on the client can reduce the lookup RPC load significantly,
causing the performance of the read/write RPCs to become more dominant. The read/write RPC perfor-
mance of a server can be significantly improved by minimization of memory to memory copying and tun-
ing of the low level network interface handling code.

18 hiod is a daemon that does asynchronous 1/0 for client NFS
19 don’t push writes on close is the major effect of disabling cache consistency

-12 -

Two of the major limitations of NFS are actually a result of the implementation of Sun RPC on
UDP transport. The at least once semantics of these RPC's can result in faulty behaviour on a heavily
loaded server, due to the repetition of non-idempotent RPCs. Also, the simple timeout/retransmit scheme
used to achieve reliability is inadequate for all but the most reliable client/server interconnects. Serious
degradation of performance has been observed across even a single IP gateway. Early evidence suggests
that UDP transport can be improved by dynamic RTO estimation and a congestion window modelled
after that used by TCP. It has also been found that TCP performs fairly well as an NFS transport
mechanism, with an increase in CPU overhead of about 20% over UDP.

A cache consistency protocol would reduce the number of write RPCs by at least half.

Future Directions

As CPU speed increases, real work becomes less CPU bound and more sensitive to 1/0O perfor-
mance [Ousterhout90]. As such, a performance evaluation of the client side running on a 20 MIPS
workstation could yield further insight into appropriate client side caching mechanisms. In particular,
with a reduction in lookup RPC rate due to a name lookup cache, it may be possible to achieve higher
performance gains from a Sprite like cache consistency protocol than was observed by Srinivasan et al.
[Srinivasan89] The experimental mount option for don’t do cache consistency permits determination of an
optimistic bound on the performance gains of such a Sprite like cache consistency protocol but does not
solve the problem. A cache consistency protocol that is crash and network partition tolerant is still
needed. A question here is whether full cache coherency is required or simply a mechanism for doing a
delayed write without push on close policy safely.20

More work needs to be done on good transport mechanisms for RPC's. An improved
timeout/retransmit scheme for UDP would be a first step, since there are so many NFS/UDP servers out
there today. However, in the future | believe that UDP needs to be replaced as a transport mechanism for
RPC's.

It would be desirable to construct some sort of experimental test bed to explore performance issues
related to many gateway hops and long fat pipes. [Jacobson88b] Such a testbed could be used for experi-
mentation with tranport mechanisms and caching techniques better suited to large delay paths. To
achieve good performance in these internetworks, the number of times that an 1/0 system call blocks for
an RPC reply?! must be minimized. This would be achieved in part by a cache consistency protocol.
However, | think that you must also do more cache preloading. There are many possibilities here. For
reads, you might either increase the size of the read RPCs or the level of read-aheads?? or both, so that
most read system calls find the data already in the local cache. | think that you also need a way of doing
many name lookups per RPC, possibly by adding areaddir_and_lookup_files RPC to the protocol.

Acknowledgements

| am indebted to the people at the Computer Systems Research Group of the University of Califor-
nia Berkeley for their friendly poking and prodding over the past couple of years. Professors Jim Linders
and Tom Wilson here at Guelph provided much needed guidance and support. The OSF has provided
both moral and financia support for this activity and DEC helped immensely by providing a 50% equip-
ment grant. | must also thank the personnel of Computing Services and Communications Services on the
Guelph campus for permitting the use of their facilities for benchmarking.

20 This is not meant to imply that a delayed write without push on close protocol that retains close/open consistency
criteria, handles disk full errors and server crashesis simple.

21 [Osterhout9Q] refers to this as decoupling I/O.

22 Normally Unix does a read-ahead of 1 block. By increasing the level of read-ahead, | mean doing a read-ahead of
the next 2-4 blocks.

-13-

Appendix. Experimental Details

All tests were performed on identical hardware, MicroVAXIIs with RD53 disks and a DEQNA
ethernet interface attached to either a lightly loaded Ethernet or the internetworks described in Section 4.
Although not representative of current hardware, these systems demonstrate relatively well balanced per-
formance (ie. slow CPU, slow disks and a slow network interface) and were the only systems available
that would run both 4.3BSD Reno and a vendor implementation of NFS based on the Sun reference port.
The emphasis was placed on the four RPCs getattr, lookup, read and write, since these make up a major-
ity of most NFS RPC workloads. For client side benchmarking, the same server was aways used. For
the Modified Andrew Benchmark, the DECstation 3100 was selected as it has a sufficiently fast processor
so that real work, such as C compilation, is not entirely CPU bound. For comparisons between 4.3BSD
Reno and the vendor kernel (Ultrix Version 2.2), the kernels were configured with identically sized buffer
caches and file systems.

The percentage of idle CPU as reported by iostat(1) was observed to be erratic during early test
runs. The cause of this was found to be a hardware constraint of the MicroVAXII, which masks off clock
interrupts during peripheral interrupts. To avoid this problem, all kernels were patched with a counter
inside the idle loop to allow for an accurate measure of CPU utilization. This is a particularly handy bit
of instrumentation, since it does not have any adverse effect on real performance due to the fact that the
instrumentation overhead is only incurred when the CPU isidle.

Two caveats were identified in the Nhfsstone server characterization benchmark as follows:

1) The Nhfsstone benchmark uses long file names to defeat client name caching, but this can also
defeat server name caching. This will tend to bias against servers with good lookup name caches.
To determine the extent of this problem, the lookup benchmark was run against a server with and
without name caching enabled.23

2) The Nhfsstone benchmark chooses a file at random and then performs a random operation on it in
proportion to its load mix. Since most load mixes have a small proportion of writes (8% is the
default), starting with empty test directories causes most files to remain empty during the test inter-
val. This implies that most reads are performed on empty files and biases the results against a
server with good read performance. Further, as testing continues, more files are written reducing
the number of empty files. This results in the average RTT increasing over time, due to the fact
that fewer of the reads are of empty files. To avoid this side effect, the subtree was preloaded with
an identical set of files before each test.

References

[Cheriton86]
David R. Cheriton, VMTP: A Transport Protocol for the Next Generation of Communication Sys-
tems, In Proc. SGCOMM 86 Symposium on Communications Architectures and Protocols, pg.
406-415, Stowe VT, August 1986.

[Chesson87]
G. Chesson, Protocol Engine Design, In Proc. Summer 1987 USENIX Conference, Phoenix, AZ,
June 1987.

[Jacobson88a]
Van Jacobson, Congestion Avoidance and Control, In Proc. SGCOMM 88 Symposium on Com-
munication Architectures and Protocols, pg. 314-329, Stanford, CA, August 1988.

[Jacobson88b]
Van Jacobson and R. Braden, TCP Extensions for Long-Delay Paths, ARPANET Working Group
Requests for Comment, DDN Network Information Center, SRI International, Menlo Park, CA,
October 1988, RFC-1072.

23 4.3BSD Reno name caches file names up to 31 characters, which is longer than the names used by the Nhfsstone
benchmark.

-14-

[Jacobson89]
Van Jacobson, Sun NFS Performance Problems, Private Communication, November, 1989.

[Juszczak89]
Chet Juszczak, Improving the Performance and Correctness of an NFS Server, In Proc. Winter
1989 USENIX Conference, pg. 53-63, San Diego, CA, January 1989.

[Karels36]
Michael J. Karels and Marshall Kirk McKusick, Toward a Compatible Filesystem Interface, In
Proc. EUUG Conference, September 1986.

[KeithoQ]
Bruce E. Keith, Perspectives on NFS File Server Performance Characterization, In Proc. Summer
1990 USENIX Conference, pg. 267-277, Anaheim, CA, June 1990.

[Kent87a)
Christopher. A. Kent, Cache Coherence in Distributed Systems, Research Report 87/4, Digital
Equipment Corporation Western Research Laboratory, April 1987.

[Kent87b]
Christopher A. Kent and Jeffrey C. Mogul, Fragmentation Considered Harmful, In Proc.
SIGCOMM 87 Workshop on Frontiers in Computer Communications Technology, pg. 390-401,
Stowe, VT, August 1987.

[Nelson88]
Michael N. Nelson, Brent B. Welch, and John K. Ousterhout, Caching in the Sprite Network File
System, ACM Transactions on Computer Systems (6)1 pg. 134-154, February 1988.

[Nhfsstone]
Nhfsstone NFS load generating program, Legato Systems Inc., Palo Alto, CA, 94306.

[Nowicki89]
Bill Nowicki, Transport Issues in the Network File System, In Computer Communication Review,
pg. 16-20, March 1989.

[Ousterhout90]
John K. Ousterhout, Why Aren’'t Operating Systems Getting Faster As Fast as Hardware? In Proc.
Summer 1990 USENIX Conference, pg. 247-256, Anaheim, CA, June 1990.

[Reid90]
Jm Reid, N(e)FS: the Protocal is the Problem, In Proc. Summer 1990 UKUUG Conference, Lon-
don, England, July 1990.

[Sandberg85]
Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon, Design and Imple-
mentation of the Sun Network filesystem, In Proc. Summer 1985 USENIX Conference, pages 119-
130, Portland, OR, June 1985.

[Srinivasan89]
V. Srinivasan and Jeffrey. C. Mogul, Soritely NFS: Implementation and Performance of Cache-
Consistency Protocols, Research Report 89/5, Digital Equipment Corporation Western Research
Laboratory, May 1989.

[RFC1094]
Sun Microsystems Inc., NFS Network File System Protocol Specification, ARPANET Working
Group Reguests for Comment, DDN Network Information Center, SRI International, Menlo Park,
CA, March 1989, RFC-1094.

